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A theory of a crystal lar.tice with substantially non-linear interaction between the atoms during arbitrary mutual displacements 
under conditions of elastic shear of a layer is proposed. The energy of two-dimensional deformations contains periodic and gradient 
terms. The equilibrium equation in the form of the sine-Helmholtz equation (with two characteristic coherence lengths) is solved 
accurately. It is shown that a shear virain homogeneous along the layer unstable and is stabilized by modulations. As a result, a 
superstructure with long periods arises, i.e. there is a change in the long-range translational order. Relations are obtained, linking 
the size and the amplitude of the displacement field, which provide the conditions for the superstructure to exist. A bifurcation 
transition from purely elastic deformation of the lattice to elastoplastic deformation is found. © 2000 Elsevier Science Ltd. All 
rights reserved. 

Some results of the theoretical analysis were presented in a brief communication [1]. The present 
paper not only ge:aeralizes these results but also reveals the physical significance of the structural 
transitions and bifilrcation points. The theory focuses mainly on the problem of the stability of elastic 
shear. 

In continuum mechanics there is no fundamental difference between spatially homogeneous and 
inhomogeneous deformations. However, if the translational symmetry related to the periodic structure 
of the body is taken into account, it is clear a priori that the difference is substantial. The former 
deformations, unlike the latter, do not disrupt the long-range translational order. In continuum theory, 
account is taken o:f point but not of translational symmetry, and therefore some effects, including a 
change in the structure of the body, do not lend themselves to a description. 

However, under large deformations, the structure of an actual body changes considerably. Not to 
mention the occurrence and activation of defects in the broadest sense of the word, the effects of loss 
of stability of homogeneous deformations become possible in the body, Thus, in bodies possessing a 
layered periodic structure (composites or smectic liquid crystals), undulations, or wavy distortions of 
plane layers, are observed during uniaxial stretching across the layers. The structure withstands 
homogeneous deformations (an increase in the interlayer distances) only up to a certain limit. Flexural 
deformations, i.e. inhomogeneous deformations, then become more favourable. 

An analogous effect is probable in the case of high uniform shear, which may, after a certain instant 
of time, be accompanied by shear energy transfer to other degrees of freedom, generating inhomo- 
geneous deformations. This may occur under large deformations which lower the interatomic potential 
barriers and weaken the internal crystal field maintaining the translational order in the system. As result 
of its disruption, the less energy-intensive inhomogeneous deformations become more preferable. 

To predict structural instability of this kind, a theory taking account of the long-range translational 
order in the system and the possibility of it varying is of course required. The simplest model should 
take account of the competition of the interatomic potential (responsible for the maintenance of the 
periodic order) and gradient terms governing its breakdown. Bearing in mind the spatially smoothed 
description, there is no sense in proceeding on the basis of the paired interatomic potentials - this 
description has excessive detail. It is sufficient to introduce the potential interaction of atomic chains 
with each other as a periodic function of the mutual displacements and of the atoms of neighbouring 
chains. It would be possible to confine ourselves to this if the chains were unstretchable. Therefore, 
gradient terms should be present in the potential responsible for the final stretchability of the chains 
and for their non-uniform shear in the transverse direction. 
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1. F U N D A M E N T A L  EQUATIONS 

We will proceed on the basis of the simplest form of the overall potential E in relation to the model of 
a polyatomic layer of thickness H subjected to shear along the OY axis. The structure of the layer is a 
two-dimensional square lattice with period b. The energy E of the area of a layer of length 2B is taken 
in the form 

~ 0 [kl(au)2 +k2(au]2+ 2p(1-cos2rtu)]dxdy 2E= I ! t.axJ t, ay) (1.1) 

where u is the microdisplacement (in units of b) along the layer (the OY axis), ka is the shear 
micromodulus, k2 is the longitudinal tensile micromodulus of the lattice and p is the amplitude of the 
interparticle periodic potential, and also the amplitude (the greatest value) of the cohesion force. 

The micromoduli are different, strictly speaking, from the corresponding moduli in the macroscopic 
theory of elasticity, which operates with macrodisplacements U (displacements of macroparticles with 
respect to their initial positions), i.e. with acoustic degrees of freedom. The microdisplacements u 
correspond, as it were, to optical modes of deformation, which are excited when the structure loses its 
stability. 

The first two terms in (1.1) correspond to microgradients. The third term in (1.1) corresponds to the 
energy of uniform shear of rigid monolayers (chains), while the first two terms take into account their 
compliance or the elasticity of the two-dimensional lattice under shear and tension along the OY 
coordinate axis. In the case of rigid monolayers, a simple condition where the microdisplacement field 
is constant denotes not the rigid displacement of the entire lattice as a whole but its uniform shear 
microstrain, which essentially is equal to the relative magnitude (in units of b) of the microdisplacement 
u. In the case of the rigid microshear of neighbouring chains by the magnitude of one interatomic distance 
in the crystal, a twinning deformation is produced. 

Note that it is actually a three-dimensional lattice with two-dimensional displacement fields that is 
being examined. However, it is true that two-dimensional lattices have a specific feature in connection 
with fluctuations and correlation functions, but this is beyond the scope of the present theory. 

The equilibrium equation corresponding to the minimum of the functional (1.1) has the form 

k i (a2u / ax 2) + k 2 (a2u / ay 2) - p sin 2/tu = 0 (1.2) 

This non-linear equation, well known as the sine-Helmholtz equation, obviously contains two 
characteristic coherence lengths of the lattice 

l, = ~f-~l / P, 12 = ~V~21P (1.3) 

They determine the mesoscopic scales which appear in the given theory, unlike the theory of scaleless 
continuum theory. On scales smaller than the mesoscopic scales, the long-range translational order is 
broken down entirely by displacement gradients. The lattice retains a certain translational order only 
at long distances. 

When ll ---) 0 we arrive at the one-dimensional Frenkel-Kontorov model - an elastic chain of atoms 
interacting with a periodic substrate. In the model proposed, however, we consider a system of parallel 
chains interacting with each other (and not with the substrate), capable both of slip in relation to each 
other and of continuous deformation. The first two terms in equilibrium equation (1.2) correspond to 
continuous forces smoothed with respect to atomic scales, while the third non-linear term takes account 
of interatomic structural forces. On averaging with respect to sizes exceeding the mesoscopic scales, 
structural forces disappear and the model is converted to the continuum model. The case when the 
continuum forces vanish with zero gradients of microdisplacements is also not trivial. Then the structural 
forces are self-balanced if u = __. 1, which follows directly from Eq. (1.2). Twin formation corresponds 
to this case. 

If (1.2) corresponds to the minimum of functional (1.1), an equation with the opposite sign in front 
of the non-linear term corresponds to the maximum. Their solutions u + and u_ are obviously related 
to a transformation (changing the sign of the sine), i.e. 

u_(x,y)= u+(x,y)-½ (1o4) 

kl (a2u+ / ax 2) + k2 (~2u+ / ~y2 ) + P sin 2~u+ = 0 (1o5) 
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They differ by the translation of the structure by a lattice half-period (in units of b), in fact, in both 
directions. However, in (1.4) only one direction is specified, which is convenient for subsequent 
formulation of the boundary conditions. As a result of the transformation of (1.4), we change from a 
stable to an unstable lattice configuration, where some atoms are displaced from local minima to the 
apexes of potential barriers, while others are displaced from the apexes to the minima. It is clear that, 
for a shear by more than a half-period, the switching of interatomic bonds occurs with a change in the 
neighbours of parlticles - a situation that is impossible in a continuum model. In the present theory this 
is admissible (elas.toplastic shears arise), but this case is not considered. 

Here, we are interested only in elastic microde formations in the layer, where the maximum permissible 
(critical) shear at the boundaries 2u ~< 1, while in the remaining volume the shear is less. Before proving 
the stability of inhomogeneous displacements modulated along the layer, we will return to an analysis 
of the accurate two-dimensional solution u of Eq. (1.2) for an infinite layer of thickness H, which will 
obey the boundary conditions of critical shear 

u _ ( 0 , y ) = - ~ ,  u (H ,y )=+~,  u_(x,y+2mB)=u_(x,y), m=+i ,2  .... (1.6) 

In this case we are dealing with the mutual shear of neighbouring chains at boundaries x = 0 and 
x = H by a half-period of the initial lattice, in both directions, when the atoms emerge at the apexes 
of the microrelief. The signs in the first two equalities can be replaced with the opposite signs in view 
of the equal shear to the left and right. Obviously, within a layer (of thickness H), these shears are of 
course less than half the interatomic distance. Such a deformation is correctly said to be purely elastic. 
The third condition in (1.6) is the condition of periodicity of deformations along the layer. 

2. C O N S T R U C T I O N  OF THE S O L U T I O N  

To find the solution of the problem in the form of (1.4) it is necessary to refer directly to Eq. (1.5). We 
will use Lamb's method [2] to separate the variables for the sine-Helmholtz equation (1.5), according 
to which the solution is found in the form 

tg(rtu+12)=QI IQ2, Q, =Q(x), Qz =Q(Y) (2.1) 

Using this representation, the initial equation (1.5) is divided into two ordinary non-linear differential 
equations in the partial functions Q1 and Q2 

(3Q, lax) 2 = a2(Q~ + B I )(Q~ + C,) (2.2) 

(aQ2 l a y )  = = a= - )( c= - QJ ) 

In the original book [2], on the right-hand side of these equations there are three arbitrary integration 
constants which were selected in advance so that the initial equation was satisfied. It is best, as in [3], 
to write the binomials on the right-hand side in terms of five constants (a, B1, B2, C1 and Cz) and to 
obtain [by substituting expressions (2.2) into (1.2)], in explicit form, two additional relations that these 
constants obey 

B,C I =B2C2, a2(B, +Cl ) -a=(B2+C2)=I  (2.3) 

Equations (2.2) have a solutions in elliptic functions. The introduction, at the intermediate stage, of 
surplus integration constants provides greater scope for selecting particular elliptic functions, guided 
by the specified boundary conditions. This selection is later checked using relations (2.3), which are 
the conditions for a solution to exist. 

The procedure for constructing the solution of interest to us was described in detail in [4, 5]. It has 
the form of a doubly periodic function 

tg(•u+ / 2) = + tn(ql x) I(A sn(q2y)) (2.4) 

A2=v2/~ /1 -v~ ,  q l = K i I H ,  q2=K21B 

where ql and q2 are spatial elliptic frequencies. H and 2B are the half-periods of the Jacobi elliptic tangent 
tn and sine sn, respectively, and/(1 and K2 are complete elliptic integrals of the first kind, depending 
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in a known way on their arguments - moduli vl and v2 [6]. The latter are defined in the range from 0 
to 1. 

The following asymptotic forms hold [6] 

K ~ o o ,  tn~s inh ,  s n ~ t h ,  v ~ l  

K ~ n / 2 ,  tn--~tg, s n ~ s i n ,  v ~ 0  
(2.5) 

In particular, they show that moduli vl, v2 and K1,/(2 determine the degree of ellipticity of the 
corresponding functions and their degree of localization along the corresponding axes, and with it the 
magnitudes of the displacement gradients. The latter can theoretically also be infinitely large with limited 
periods 2H and 4B or spatial frequencies of the displacement field. 

Expression (2.4) is an unstable solution since it satisfies Eq. (1.5). However, it enables us to construct 
a stable solution of Eq. (1.2) in the form of (1.4), satisfying the necessary boundary conditions (1.6), 
which can be easily checked. To proceed directly from Eq. (1.2), however, would be difficult. 

The solution is periodic along the O Y  axis (with a period of 4B) by virtue of the periodicity of the 
function sn. Since it is sign-variable, all cross-sections of the layer are characterized by a complex 
displacement profile. It is clear that expression (2.4) is also a periodic solution along O X  axis with a 
period of 2H, but the filed of microdisplacements itself can increase in the positive direction along the 
O X  axis. The solution obtained [(1.4),(2.4)] indicates that, in the deformed state, when the conditions 
of critical shear are achieved along certain lines, a translational order is also possible, which is realized 
in the form of a domain superstructure. 

3. D I S P E R S I O N  RELATIONS 

Continuing the analysis of the elastic configuration (2.4), (1.4), (1.6), we will examine the criteria for 
its existence. We will initially consider the fact that, after satisfying the boundary conditions, solution 
(2.4) contains two arbitrary integration constants vl and v2. Theoretically they are found from (2.3), 
which must be referred to as dispersion relations, since constraints are imposed on the spatial frequencies 
ql and q2. They can be expressed in terms of the constants indicated as follows: 

( 2 -  v21)k,q? -(1 + v~)k2q 2 + p = 0  (3.1) 

k, q2 = A2k2q~, p>~O (3.3) 

The first of these is a prototype of Eq. (1.5) itself and is obtained by substituting expressions (2.4) 
into it. Note that, based on the stable solution (1.4), it must be substituted into Eq. (1.2). Of course, 
we will obtain the same relation (3.1). 

The second term in (3.1) corresponds to the gradients of displacements along the layer that are 
responsible for the inhomogeneous elongation of chains. It is significant that the sign in front of it is 
negative, unlike the first term. This means that competition occurs between the corresponding forces 
in establishing equilibrium. Whereas the longitudinal elongations (compressions) create forces directed 
against the structural forces, maintaining the order, the transverse gradients act in the same direction 
as the structural forces. The arrangement of the signs in (3.1) already indicates that, for it to be satisfied 
(the emergence of stable elastic deformations), the longitudinal gradients must predominate over the 
transverse gradients. If this is not the case, equality in (3.1) is impossible. The longitudinal gradients 
obviously stabilize large shear, which becomes unstable when there are no longitudinal modulations. 

The relation between the gradients is specified by the second dispersion relation (3.2) depending on 
the value of the parameter A, which was initially defined in (2.4). However, relation (3.2) gives this 
parameter the simple meaning of the ratio of the characteristic energies of microshear and 
microelongation. It plays a decisive role in problems of the stability of these deformations. Its critical 
value may be determined more precisely after elementary transformation of relations (3.1) and (3.2) 
into the following two conditions 

- S  = A2pI = P2 (3.3) 

where 
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S=(A2-1)(I-v~IA2); P~=pl(klq~), P2=p/(k2q~) (3.4) 

Note that separation of the dispersion relations with respect to the spatial elliptic frequencies ql and 
q2 is actually obtained in (3.3). In non-linear theory, the frequencies are not only expressed in terms 
of the material constants but also depend on the parameter A. Note also that the effective relative 
potentials P1 and P2 reintroduced into (3.4) stand for certain collective characteristics of the interaction 
not of the individual atoms but of chain sections of length 4B and 2H in the superstructure. Like the 
lattice potential p of the underformed structure, they are positive. 

The latter is extremely important, since it requires the inequalityA < 1, for which S < 0, and dispersion 
relations in the form of (3.3), i.e. the conditions for a stable solution to exist are satisfied. As pointed 
out earlier, an unstable elastic lattice configuration and negative values of the effective barriers P1 and 
P2 correspond to 'values of A greater than unity, when transverse gradients begin to predominate. As 
shown in [1], stabiilization is also possible in the region of values of A greater than unity on account of 
plastic shear. It i:~ then possible to construct a stable solution, but with new boundary conditions, 
transition to whic!h occurs via the point A = 1. 

For this reason, it is interesting to examine the point of structural transition A = 1 from other 
viewpoints. As follows from (3.3), the condition for making the potential barrier vanish p = 0, say, on 
account of temperature, also corresponds to this point. Here, the structural forces disappear - 
disappearance of translational order also occurs as a result of loss of resistance of the sublattices to 
shear. Then the raodel degenerates into two independent structureless continua related only by the 
boundary conditions. In fact, both fields (micro-and macrodisplacements) now obey identical equations 
of the classical theory of elasticity. It is clear that the branching point of the solution of Eq. (1.2) 
corresponds the condition S = 0 orA = 1, andA has the meaning of a bifurcation parameter (Fig. 1). 

In fact, it is not necessary to suppose that the potential barrierp vanishes when the temperature of 
the body increases. This would lead to a basic change in the initial model itself. The point S = 0 can 
be approached, although it is true only asymptotically, by allowing the effective potential barriers P1 
and P2 defined in (3.4) to tend to zero. The role of the lattice potential is suppressed by the increase 
in the deformation gradients, disrupting the translational order. As a result, as in the case when 
p = 0, there is a change in the sign of S, and the parameterA passes through unity. Here, the transverse 
and longitudinal gradients swap roles. 

This transition means that the resistance to shear of the deformed sublattices (superstructure) is lost, 
and considerable rearrangement of the distorted translational order of the deformed configuration 
occurs. Therefore, the effective potentials, which are relative quantities, can be regarded as parameters 
of the distorted translational order in the deformed crystal. 

Thus, regions of purely elastic deformation (A < 1) and elastoplastic deformation (A > 1) are 
separated by the bifurcation point A = 1, at which transition is accompanied by slip at the boundary, 
into half-periods of the initial lattice. 
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4. C R I T E R I A  O F  L O C A L  S T A B I L I T Y  O F  T H E  D E F O R M E D  
C O N F I G U R A T I O N  

Along with the inequalityA < 1, additional constraints are imposed on the region of existence of stable 
elastic shear. They likewise follow from the dispersion relations. To determine them it is necessary to 
eliminated the integration constants Vl and v2 from relations (3.1) and (3.2). Having defined these 
constants from (3.2) and (3.1) in terms of H and B, we obtainA as a function of the same quantities. 

Figure 1 shows how, A depends on the scale of the longitudinal modulations B (in units of 12) for 
different thicknesses. The branching of the solutions is obvious. The case examined here of elastic 
deformations A < 1 is presented as a family of lower curves, each of which corresponds to a certain 
value of the thickness: H/ll = 1, 10. It is clear that a solution exists only for fairly short-wave modulations 
B/12 < n/2, while there are simply no homogeneous deformations along the layer. Elastoplastic shear 
corresponds to the upper familyA > 1 [1]. 

A more detailed analysis of the local stability of solutions is possible. For this it is necessary to show 
the relation between the three quantities A, B and H as a system of curves of H against B for various 
values of the bifurcation parameterA (Fig. 2). Curves of existence of the solution (1.4), (2.4) are then 
obtained. 

In the case examined ofA < 1, each curve in the (HB) plane for a specified value of A has B = B i 
along one asymptote and arrives at the final point H~, B~ without reaching the origin of coordinates, 
so that the inequalities 

H >~ Hcw H <~ o*, Be <~ B <~ B i 

are satisfied. The values of these limits are as follows: 

(4.1) 

H c = rclt(I - A 2 ) I ( 2 A ) ,  

B2 = ~a2"~l - A 2 / 2  

Bc= ~(I-A2)K2z,  /(22 =K2(vz = A 2) 
(4.2) 

It is clear that not all values of the parameters H and B are admissible - obvious constraints follow 
from (4.1). The region of large longitudinal scales of the superstructure is entirely eliminated. In fact, 
the value orB does not exceed the coherence length with a factor depending onA that can be extremely 
small asA ~ 1. Thus, only short-wave modulation structures are possible, and elastic shear that is uniform 
along the layer does not occur along the layer. However, if the size of the superlattice cell is even smaller 
than the admissible Hc and Bc, then such a small-scale superstructure is also unstable. 

It is clear that, of the entire range of admissible sizes, only the structures of lowest energy occur as 
equilibrium structures. In Fig. 2, the segment of the horizontal line that at the level H = Hc intersects 
the equilibrium curves from left to right reaches the final point Bc, beyond which there is no solution 
- locally there are no stable states. This point also determines the most stable configuration since, for 
an appropriate layer thickness H~, this is the least deformed structure - with the greatest value of the 
modulation period B~. For any thickness, such a limiting point and the corresponding most favourable 
modulated superstructive (with a modulation length Be) exist. 
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Of course, there still remains a wide range of possible structures. In fact, eliminating the parameter 
A from the expressions for Hc and Bc in (4.2), we obtain the curve of equilibrium structures Bc(Hc) (the 
dashed curve in Fig. 2). This is the lower boundary of the region of existence, passing through the initial 
points of the curves and having a vertical asymptote (the dash-dot line). The latter intersects the abscissa 
axis at the point B i 12 = ~/2. 

The problem of a unique real superstructure must then be solved by selecting the layer thickness, 
which will be addressed below. 

Inequalities (4.1) can be presented as the energy conditions for the realization of stable critical shear, 
after the corresponding values have been revealed according to (4.2). We then obtain 

p>~knOtl2H)2(1-A2)l lA2, (I-A2)21A2<~PI <~(ilA2-1) (4.3) 

k2(Itl2B)2(l_A2)>~p~(k2/B2)(l_A2 2 2 ) K22, (I-A2)2~p2<~(I-A2) (4.4) 

The constraint on the potential barrier, not only from below but also from above, is important. In 
order to understand this, we will once again consider dispersion relation (3.1), from which it follows 
that, for the stability of elastic shear, the longitudinal gradients should predominate. The domains of 
the superstructure must not be too short - they should at least exceed the interatomic distances 
considerably. For this reason, potential barriers of the lattice that are too great cannot be surmounted 
under these conditions. Thus, purely elastic critical arises at the fork of the values o fp  and B or the 
gradients, as presented in relations (4.4). 

Purely elastic but large microdeformation and their gradients are possible, as is now clear, without 
plastic relief by virtue of the specific mechanism of discharge. It is realized by the compensating 
(stabilizing) forces generated by the microdeformation gradients along the layer. 

The fact is that ,extension (contraction) of chains along the layer prevents the particles from rolling 
into potential pits since this would lead to additional elongation extension (contraction). In other words, 
the neighbouring chains acquire a mismatch of structures. As a result, instead of plastic deformations, 
large longitudinal gradients arise, drawing off the excess energy of shear deformation. Such a 
redistribution of energy between the microdeformation modes occurs in a small-scale (along the layer) 
modulated structure, such as that which occurs when A < 1. 

The mismatch in the structure of the neighbouring chains is only favourable for stability up to a certain 
limit. For long chain lengths 2/3, the energy of transverse shear is compensated insufficiently to ensure 
stability. Therefore, there is a constraint on the chain lengths of purely elastic structures in accordance 
with (4.1). 

5. D I S C U S S I O N  OF THE RESULTS 

Strictly speaking, locally stable shear deformations satisfying the condition of a minimum of the functional 
(1.1) have been examined so far. At the boundary of the region of existence, the smoothest long-wave 
modulations occur, already assumed to be energetically preferable and therefore more stable. In fact, 
the minima of the integral energy of microdeformations E/(pHB) correspond to them. A series of curves 
is obtained, indicating a drop in energy towards an increase in the length of modulation B for different 
thicknesses H. Each curve, sloping down, ends at the final point Bin- A subsequent rise on each curve 
is not revealed - this goes beyond the region of existence of a solution. Thus, we are dealing with a 
minimization of the energy at the boundary of the region of existence of solutions. 

The relation between the minimizing values Bm and H,~ forms a curve of energetically preferable 
superstructures, which coincides with the boundary of the region of existence of solutions (the dashed 
curve in Fig. 2). This means that Bm = Bc and Hm =/-/~. The latter are given by the first two formulae 
of (4.2). 

It is clear that the energetically preferable superstructures also form an entire spectrum, i.e. are non- 
equivalent. However, it is not advisable to compare them with respect to the energy of 
microdeformation. In order to find the globally stable superstructure possessing the lowest shear energy, 
it is necessary to extend the analysis so that it also includes the energy of the macroscopic field of shear 
deformation e. 

The fact is that, unlike longitudinal modulations, the transverse microdeformations are established 
not arbitrarily but under the action of shear microdeformations e which act as an external field. On 
reaching some threshold, a superstructure with domains of a certain thickness Hm, depending on e, 
suddenly arises. By equating Hm to Hc from (4.2), it is possible to find the specific value of the parameter 
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A, and also the scale of modulation Be. Then, using these values in the arguments of the elliptic functions 
in (2.4), we obtain solution (1.4) in its final form, describing the unique superstructure that arises in 
the macroscopic field of shear deformations. 

The problem of global stability and generation of microdeformations in the macroscopic field merits 
a special consideration. 
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